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1. JINTRODUCTION
Project Objectives

The objective of the present research is twofold. The first objective is
to further the theoretical understanding of supersonic flow separation through
an analytical {nvestigation. The second objective is to develop a semi-empirical
correlation of the significant parameters found in the analytical study based on
available experimental data, Such correlations are necessary to the completion
of a method of predicting the pressure distribution on a surface in a separating
and reattaching supersonic flow.

Analytic analysis. The first step in the analytical analysis was a compre-
hensive survey and evaluation of the existing literature in the field. The major
part of this survey has been carried out and a summary of the material is given
in this report. The evaluation of current literature will be continued throughout
the course of the project. An intensive search for suitable supersonic boundary
layer data is also currently underway. '

Considerable effort has been devoted to determining the significant parameters
and the proper combination of simplifying assumptions. At the date of this report
this part of the analysis of the problem is incomplete, although encouraging progress
has been made. Once parametization of the problem is more nearly complete, the
chosen parameters and techniques will be mated with empirical correlations from
what data is available, forming an integrated analysis of the problem.

Empirical correlations, Both supersonic and subsonic experimental data have
been analyzed in attempts to obtain valid empirical correlations. Thus far the
correlations obtained have been unsatisfactory due to the lack of empirical data
of a suitable nature, These correlation attempts and the problems involved are
discussed in subsequent sections of this report.

II. LITERATURE SURVEY (ANALYTICAL METHODS)
II-1. General Discussion

The presentation of most literature in this field followed nearly the same
pattern. The integral momentum equations are used almost exclusively as the
simplifying technique for handling the boundary layer equations. Most investigators
choose to analyze the problem in steps; for example, 1) prior to separatiom, 2)
separation to shock impingement, 3) impingement to reattachment and 4) after re-
attachment. The initial assumptions for handling the boundary layer equations
throughout all regions, in general, stem from prior knowledge of attached flows.

The behavior of the velocity profiles within the separated region is quali-
tatively understood., However, these profiles have been handled in several ways
analytically. Some prefer polynomials (as used by Karman-Pohlhausen), while others
have adopted the Falkner-Skan,’'Stewartson reversed flow, or combinations of these



profiles. Some of these profiles have inherent advantages in one region while
they become unrealistic representations in the following region. References (1)¥*
to (7) present much of the literature describing the different boundary layer
profiles.

Experimental studies of this phenomenon have provided a model of the flow
which 18 used for theoretical considerations, (See Figures l-a and l-b for a
pictorial representation of two commonly encountered flow situations). The
majority of the analytical treatments based on this flow model have been based
on the Crocco-Lees (8) method

The analysis prior to shock impingement has received the more sophisticated
treatment, while the reattachment is generally lumped together by one or two
additional assumptions and is then represented by a simple set of equations.

The remainder of this section is devoted to a discussion of four recent
methods which have appeared. They represent the current refinements and in-
corporate much of the earlier literature in their development.

1I-2. Crocco-Lees Method by Glick (9)

The Crocco-Lees (8) method is based upon the assumption that the parameters
describing the boundary layer are dependent upon the rate of entrainment of fluid
into the boundary layer from the external stream and that there exist certain
universal correlation functions which relate these parameters.

An extension of the Crocco-Lees method was made by Glick (9). This study
of separated and reattaching ergions of flow led to a physical model which
incorporates the concept of the '"dividing' streamline and uses experimental
data to determine values for the significant parameters. According to this
physical model, viscous momentum transport is the essential mechanism in the
zone between separation and the beginning of reattachment, while the reattachment
process is, on the contrary, an essentially inviscid process.

The Crocco-Lees method divides the flow into two regions - an outer region
which is assumed to be essentially nondissipative, and an inner region in which
viscosity is assumed to play an important role. Figure 2 expresses the separated
region in terms of Crocco-Lees' language, The extent of the viscous region is
measured by the length, &, which for the case of a body in high-Reynolds-number
stream is the usual boundary layer thickness. The definition of the length §
is artificial, and physical quantities such as pressure and interaction distance
should not be sensitive to the definition of §. In order that the equations
describing attached, separated, and reattaching flows can be handled, the following
simplifying assumptions are made:

1. The gradients of viscous or Reynolds stresses in the flow direction are
negligible compared with the static-pressure gradient in the flow direction.

2. The pressure gradient transverse to the stream direction is negligible,

3. Steady flow exists.

4. The external flow is plane, isentropic, Supersonlc over a flat, adiabatic
wall. The flow diregtion at y = § is given by the Prandtl-Meyer relation,

*Numbers in parenthesis refer to references at the end of this report.
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Prandtl number is unity.

Viscosity is proportional to absolute temperature,

Flow angles relative to wall are small.

The gas is thermally and calorically perfect.

Stagnation temperature is constant throughout the whole flow.
10. Viscous region is laminar.
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The basic parameter of the Crocco-Lees method, and the one used to characterize
the flow in the viscous reglon 1s defined as K, where '
K = momentum flux . 31 (1)
mass flux x local external velocity U, '

The velocity'at the edge of the boundary layer is u, - A mean velocity in the
viscous region is defined by equation (1) and is denoted by u,. The displacement
and momentum thicknesses are defined in the usual manner.

6
bk = fo(l - ;Eﬁ-)dy = displacement thickness
e e .

s | ,
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e fo( " ) (1 " Jdy = momentum thickness
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The basic parameter (K) defined in terms of either the compressible or incompressible

boundary layer variables becomes

: 5 - o 5, - 6% (2)

The parameter f, appearing in the mean temperature-mean velocity relation, is
defined as

- * - %
.. (b, - 6% - b¥Hk)G K 6,

- : e
(6, - 6,97 &, - 5% |

The deviations of £ and K from unity measure, in a sense, the nonuniformity
of the velocity profile. For every incompressible boundary layer flow, f and K
can be related to each other, so that the given incompressible flow and the
corresponding complete family of compressible boundary layer flows obtained through
the Stewartson (10) transformation are characterized by a certain f(K) relation.
Each flow corresponds to a point in the f-K plane and the whole class of flows is
represented by a single f-K curve.

For convenience, an alternate function of f is defined as
§,% « § %%
i

_ - i
F = (£/K%) - 1= 5. - b.% - 5 %% ° (4)
1 1 1

Similarly, since F and K are defined by incompressible boundary layer parameters,
for every incompressible velocity profile there are unique values of F and K.

*
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§ %%

mean~-temperature parameter, f, goes through a maximum at a finite vaiue of 61,

Glick noticed that for a given value of the form factor, Hi the
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while K generally has the property that it increases montonically towards unity
with increasing §;. By choosing §; such that f is maximum, one obtains a simple
analytical expression for £(XK), which is

£(K) =K3/(2K - 1) |

(5)
F(K) = 2(1 - K)/(2K - 1) |

The other two correlation relations necessary to complete the formulation of
the Crocco-Lees method, C(K) and D(K), can be obtained by first using the Stewartson
transformation to eliminate compressibility effects and then examining known in-
compressible solutions. In previous studies using the Crocco-Lees method, the
C(K) and D(K) relations that have been used were those obtained from the Falkner-
Skan solutions. The C(K) is the mixing rate correlation function and D(K) 1is the
skin-friction correlation function. Roughly speaking, C(K) for the Falkner-Skan
solution is essentially constant from separation to the Blasius flow condition,
while the other theoretical solutions and the experimental Schubauer (1ll) ellipse
data show a trend in which C(K) drops sharply going from the Blasius condition to
separation. This difference is associated with the physical fact that Falkner-Skan
flows are similar flows which do not have "histories" and do not reflect the essential
change in shape of the velocity profile prior to separation.

II-2.1 Upstream of separation. The two-dimensional flows upstream of separation
use the correlation functions obtained by the maximum £ principle mentioned above,
a new C(K) relation based on boundary layers that have "histories,' and a D(X)
relation obtained by assuming that D(K) decreases linearly from the Blasius value
at Kp = .693 to zero at Kg = .630, The C(K) relation that has been chosen is one
that decreases linearly from the Blasius value of (K) to zero at the separation
value of K. (Glick assumed K, = .693 and Kg = .630 to be the best approximations
for Blasius flow and the separation point.) The correlation equations are:

CK) = 36.2 (K = .630) |
FIK) =2 (1 - K)/(K - 1), (6)
D(K) = 22.2 (K = .630),

The Ciocco-Lees equations, linearized with regard to Mach number,

e << M and M=M + ¢
@ @

become
B g

where { 1is a kind of local Reynolds number.
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The L, N, P, Q parameters are obtained from the following equations:
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o = D(K)/2(1-K) C(K) .

In calculating a separating flow problem, the free stream Mach number, My,
is known; thus L, N, P, and Q depend only on K. A value of { is chosen at the
separation point, which 1is equivalent to selecting the value of the separation
Reynolds number. Trial values of ¢ at separation are chosen, and equations (7)
are numerically integrated in the upstream direction, The correct value for ¢
at separation is obtained when the integrated quantities approach the limit
- values of € and (, at the Blasius point (K = .693); that is,

-1 ’
M (1 + %= M 3)C(K)(1-K)?
w 2 ___KkF y-1
I s B N L
b
PU X .
where A = 44, Re = , and
. X p,m
Cb =t Reé**/(l-K) (9)

where

t = Te/Tt’ and Reé** = /Tﬂﬂ./Rex.

The value of [ is not as sensitive in the iteration as is ¢. Once {sep and €sep
have been found, then the corresponding locations and pressures are found from:
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IT-2.2 Between separation and pressure plateau. The problem of separated
and reattaching flows must be treated in a manner that is different from the way
in which the problem up to separation was studied, since no detailed theoretical
studies of separated and reattaching flows exist. After separation, the flow is
essentlally divided into two parts by the dividing streamline - one part includes
all the fluid upstream of separation and the other part is a steady circulating
flow in which the fluid elements continuously undergo a cycling action. The fluid
along the dividing streamline is accelerated by viscous momentum transfer in the
region between separation and the beginning of reattachment and is thereby prepared
for the forthcoming reattachment pressure rise in which fluid along the dividing
streamline is stagnated.

In re-examining the formulation of the Crocco-Lees method beyond separation,
it became clear that in order to determine the correlation relations quantitatively
experimental results must be used, since no satisfactory theoretical data are
available. One particular experiment, performed at a free-stream Mach number of
2.45 and a free-stream Reynolds number per inch of 6 x 10% was selected.

The correlation functions have been determined only up to separation. D(K)
is assumed to be zero since the skin friction is small in the separated region.
The F(K) relation between separation and shock impingement is assumed to remain
constant at the separation value.  C(K) is expected to rise continuously from
zero near separation to a high value upstream of shock impingement. As a simpli-
fied assumption, C(K) is taken to be a constant value (C) between separation and
shock impingement. (In a later 'refined" attempt, Glick used two C(K) values;

C, was a constant used between separation and the beginning of the pressure
plateau, and C; was the value assumed during the pressure plateau.) These 'C"
values were obtained from the single experimental data by establishing a relation
between the reattachment pressure rise and the associated length ratio (Ax/xs).
The "C" values obtained are then regarded as universal and employed in the
analysis of all other separating flows,

The linearized equations which apply downstream of separation are:

- — y-1 2 (1
& _ FS/M;QT [ c,M (1 + 5= M 2) (Fsa (1 K)b) . eJ (12
P R S VL ¢ /ST s ’
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By using the universal value for C, (Glick used C; = 11.0) these equations may
be numerically integrated in the downstream direction. As in the previous
calculations, the pressure distribution may be obtained from equations (10)
and (11). '

The initial assumptions 1-10 largely stemmed from attached boundary layer
theory and are in question only for the separated parts of the flow. The lack
of knowledge of the F(K), C(K), and D(K) relations for the separated region is
considered to be the major limitation of the method.

1I-3. Lees and Reeves Method (12)

The aim of this method was to construct a theory that is capable of including
the entire flow within d single framework, without introducing semi-empirical
features, The method employs the first moment of the momentum in addition to
the usual momentum integral (zeroth moment). This method itself is not new, but
it turns out that its successful application to separated and reattaching flows
hinges on the proper choice of the one-parameter family of velocity profiles
utilized to represent the integral properties of the viscous flow., The
Stewartson (5) reversed flow profiles were found to have the qualitatively
correct behavior while polynomials did not,

In order to avoid the semi-empirical features of the Crocco-Lees method
for separated and reattaching flows, at least one additional moment of the
momentum equation must be employed. Several other methods, and more recently
the one by Tani (13), use the same approach. This application combines the
attractive features of Tani's technique with the appropriate Stewartson re-
versed flow profiles.

Upstream of separation the interaction between the laminar boundary layer
and the external supersonic flow is completely determined by the Reynolds
number and the previous history of the boundary layer. Downstream of separation,
the magnitude of the peak reversed-flow velocity in the viscous layer increases
steadily with distance along the surface, reaches a maximum, and then decreases
again as the dividing streamline moves farther and farther away from the surface.
A polynomial representation of the velocity profile based on a single parameter
was found to be inadequate to describe the sequence of events.

10




The solution for flow upstream of separation as developed in this method
requires the iteration solution of two simultaneous equations in which two
variables must simultaneously vanish as the Blasius condition is reached.
Between separation and shock impingement the solution is obtained by solving
two equations. This solution is uniquely determined by the conditions pre-
viously found for separation.

Downstream from the shock impingement point the three quantities "a"
(velocity profile parameter), the local Mach number, and the transformed
displacement thickness all decrease until reattachment is reached.

An interesting sidelight mentioned by Lees and Reeves is the definition
of "subcritical"” and "supercritical' flows. When (d§/dp) > O the flow is
termed "subcritical,’ whereas the flow is 'supercritical'' when (d§/dp) < 0.

A subcritical boundary layer is capable of generating its own positive pressure
gradient in the flow direction by interacting with an external, inviscid super-
sonic stream. A supercritical flow, on the other hand, responds to a pressure
rise generated downstream only through a sudden "jump'" or 'shock" to a sub-
critical state. Within the framework of the Crocco-Lees mixing theory, adia-
batic laminar boundary layers are subcritical, whereas adiabatic turbulent
boundary layers are supercritical.

II1-4. Makofski Method (14)

This method uses a modified Pohlhausen approach with the velocity distri-
bution represented by a fifth-degree polynomial with two undetermined parameters.
One of the parameters is related to the skin friction at the wall while the other
is proportional to the imposed pressure gradient. In the regions of flow separation
the concept of the dividing streamline is introduced in order to compute the length
of the separated region and the beginning of reattachment.

The method of analysis used by Makofskl consists of transforming the com-
pressible laminar boundary layer equations into incompressible form, obtaining
integral relations, and finally, solving these relations by use of the fifth-
degree polynomial representation of the velocity profile.

The parameters "a' and '"b'" which describe the velocity profiles are dependent
only upon the local Mach number and Reynolds number and are independent of the
agency causing the disturbance. For a flat plate without pressure gradient
(Blasius flow), "a'" is 1.78365 and "b" is 0. For "a" less than zero, the flow
will be separated from the wall. The interaction is still described by the
equations developed for the attached flow except that the concept of the dividing
streamline must be introduced in order to compute the length of the separated
region and the reattachment pressure rise.

Makofski compared his analytical calculations at Mach 2.0 with experimental
data and in hisé words, the correlation was ''excellent. However, this method is
more complex than that described by Pinkus (see below) and it shares the same
weakness; that is, 1t presupposes the position of the dividing streamline. Thus
in its present form, the Makofski method cannot be used to predict the flow in
the separated region when only the geometry and upstream flow conditions are given.

11



II-5. Pinkus Method (15)

A system of equations was developed by Pinkus which apply to the case of
separated laminar boundary layers on compression corners and curved surfaces,
This method is an extension of Tani's work., Tani had applied his approach
only to attached flows while Pinkus extended this to secparated flows. Both
methods are based on a quartic velocity profile and make use of the moment-of-
momentum boundary layer equation.

The separated boundary layer is divided into regions as shown in Figure 3,
The dividing streamline is assumed to be represented by the direction of the
isentropic stream, which makes the calculation of the behavior of separated
flows relatively simple.

A fourth-order polynomial represents the velocity profile

-‘i- =8y +a() +5)2 + c(D® + A (13)

where the coefficients are determined by boundary conditions:

u _ Pu
oY 0, dY=? 0

The remaining boundary condition,

du

e
Y = (u aY) " Pele Tax G Y-

is dropped so that the coefficients in the quartic depend in this case on 'a'",
The arbitrary parameter 'a'' has physical meaning in that it is proportional to
the shearing stress at the wall. When a = 0, the shear at the wall is zero and
the flow is ready to separate. The reattachment point is also represented by

a = 0. The usefulness of "a'" lies aot only in defining the region of separation
but also in the fact that it extends to and embraces the attached and transition
regions., Values of "a'" for the constant pressure solution (dp/dx = 0) are. 1.857
and -4.887. These represent the extremities for "a", the Blasius type flow when
a = 1.857, and the reversed flow in the pressure plateau region where a = -4,887,
Figure 3 shows the behavior of the variable "a" as the flow passes through a
laminar separation region.

The analysis is broken into three regions: the detachment, central, and
reattachment. The dividing streamline is significant because it commences at
the point of separation and ends at the point of reattachment. As mentioned
earlier, it is mathematically more convenient to postulate that the dividing
streamline determines the deflection angles of the external stream.

In the detachment region a system of 3 equationé and 3 unknowns is developed.
By simultaneously solving thes¢, the required boundary layer thickness and local
Mach numbers are obtained; hence the pressure distribution can be obtained.

12
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In the central region (from X, to x,) the pressure is essentially constant.
This means a constant Mach number and the dividing streamline has a constant
slope. 'Again, three equations must be used to solve this region.
¢

The onset of the reattachment region is characterized by a pronounced in-
crease in the pressure gradient. The Prandtl-Meyer compression formula,™together
with the boundary layer equations, provides the solution for "a' in this region
(x5-%x3). The solution for this region is constrained because the dividing
streamline must asymptotically meet the wall at the reattachment point. This
is handled by a constant (Kj) that must be suitably chosen so that both the
magnitude of the pressures and the length of the reattachment region are
satisfied. 1In other words, the end conditions and the reattachment point
impose the restrictions on the choice of Kj. »

III. LITERATURE SURVEY (EXPERIMENTAL PRESSURE DATA)
ITI-1, Subsonic Flow

At the present the most valuable data available for subsonic, laminar
separation correlations are that taken by G. Schubauer (1l1) on an elliptical
cylinder. In this experiment Schubauer placed an elliptical cylinder perpen=-
dicular to an air flow of 11,5 feet per second velocity. Velocity profiles
across the boundary layer were measured with a hot wire anemometer at twelve
stations, from the stagnation point to just after the separation point. Also
the static wall pressure was measured at sixteen points around one side of
the ellipse., Thus both velocity profile and wall static pressure measurements
were available for conversion into Crocco-Lees notation and subsequent correlation.,

The only other applicable subsonic experimental data which has been found
is that of Fage (16). A proper evaluation of the data contained in Fage's paper
has not yet been carried out,.

III-2. Supersonic Flow

The available pressure data for laminar separations is restricted to the
lower Mach numbers. The lack of data above approximately Mach 3.0 has also been
noted by others in the literature.

The investigation of the transition region by Chapman (17) presents several
pressure distributions of interest at lower Mach numbers. Also, Gadd et al. (18)
present pressure data in their study. These studies represent two broad experi-
mental programs for determining the effects of various parameters on transition
in the separated region.

A recent report by Pate (19) presented laminar separation results at Mach
3.0, Also of interest in this report are the velocity profiles which were measured
by a pitot probe. A boundary layer thickness of approximately 0.4 inches permitted
profile measurements which sho® the reversed flow in the separated region.

14



IV. IBM PROGRAM USING GLICK'S METHOD

Computer programs were written for the IBM 1410 using the Glick method
as explained in Section II-2., The technique used consists of two programs:
one that calculates the pressure distribution ahead of the separation point,
and the second which computes values between separation and the pressure
plateau,

The first program, between separation and the Blasius point, requires that
the values of ¢ and (, analogous to Mach and Reynolds numbers, be chosen for
the separation point. Once chosen, these values are used to start the step-
by-step calculation of equations (7) which move upstream to the Blasius point
in K increments. The values at the Blasius point are known from equations
(8) and (9); hence, repeated choices of ¢ and { at separation must be tried in
order to end with the correct values at the Blasius point. The program, through
repeated iterations, converges on the desired values of ¢ and { at separation.
Once these are known, equations (10) and (11) are solved to obtain the pressure
distribution.

Between separation and the pressure plateau, a .second program which solves
equations (12) was developed. The ¢ and { values found in the first program
at separation are used as inputs, This program simply marches in AK steps
between separation and the pressure plateau, calculating the corresponding
pressure ratio and x-location values for each step.

These programs have' been used to reproduce the pressure distribution curves
which Glick is reported to have made using his method. The two cases which have
been examined are the Mach 2.45 and 5.8 distributions. Figure 4 shows the
correlation that was obtained for the Mach 2.45 case, and Figure 5 is for the
Mach 5.8 case.

The correlation was found to be very poor for the Mach 5.8 problem. Glick
is not explicit in his description of how the results he illustrates were ob-
tained. However, it is implied that he used the same techniques as in the Mach
2.45 case; that is, the mixing correlation function C, is taken as a constant
equal to 11.0 between separation and the pressure plateau. Our results show
that this value is much too large, and that a value between 5.0 and 6.0 would
produce the desired magnitude for the plateau pressure, Figure 5 shows two
of the attempts that were made to match the curve given by Glick. In one case
the value of C, = 5.0 was used, starting with the separation pressure ratio
calculated by our program. The second curve starts at the separation pressure
ratio shown by Glick, and uses the value of C; = 5.0 in advancing to the
pressure plateau. .

The experimental results by Pate (19) were used to check the computing
technique. A computer analysis was performed for a laminar separation at Mach
3.0 and the analytical and experimental curves were found to be in good agree-
ment. Further checks will now be directed to the cases having higher Mach
numbers where discrepanciles appear most likely.
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V. CONCLUSIONS
V-1. General Remarks

1. In spite of the long time interest in the laminar boundary layer-shock
wave interaction problem, a satisfactory theoretical analysis still does not exist,
With a "desired'" solution, it would be possible to calculate the pressure distri-
bution along the body and in the separated region with only the geometry and
free~stream conditions known.

This problem constitutes an important class of viscous flows in which the
static pressure distribution is not a given datum of the problem, but is de-
termined by the interaction between the '"external' inviscid flow and the viscous
layer near the surface. The large number of variables involved in the description
of the flow separation has created a formidable obstacle to the development of a
‘quantitative theory.

2. The analytical attempts used thus far have been restricted to trying to
match experimental data. That is to say, in order for the present analytical
methods to generate a pressure distribution, one must know something about the
actual flow field; for example, specifically where does separation occur and
where does the flow reattach? Given these 'additional' pieces of information,
the present techniques are capable (within limitations) of generating a pressure
distribution along the surface which resembles the data found experimentally.
Most methods apply only in the region ahead of the incident shock on the surface,
However, Pinkus has extended nhis formulation so that the flow up to reattachment
can be conveniently handled. The Pinkus approach does not produce a ''desired"
solution to the problem since the pressure distribution during reattachment depends
on the constant (Kz), which in turn depends on the location of reat;achment.

3. The separation point must move upStream as the over-all pressure ratio
is increased. This is due to two factors: 1) the separation pressure rise in-
creases as the separation Reynolds number decreases, and 2) as the distance
between the separation and shock impingement is increased, the energy of the
fluid particles along the dividing streamline is gencrally increased, thus making
it possible to support a larger reattachment pressure rise. The location of the
separation point is intimately connected with the various pressure rises, and
the flow responds chiefly to an over-all pressure ratio by properly adjusting
the position of the separation point,

4., The pressure distribution between the Blasius flow and the separation
point does not depend on the downstream shape of the body. The ratio of the
pressure at separation to the pressure upstream of separation appears to be a
function of Mach number and Reynolds number only, independent of shock strength.

5. Present methods are not applicable in solving the practical problems
which face the design engineer because the necessary information to start the
solutions is not known. Unless some rule of thumb for predicting the size of
the separated region is used, there is no way to apply the techniques which
represent the current state-of;the-art.
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The above remarks represent statements of a general nature. The remainder
of this section is devoted to a discussion of specific items.

V-2. C(K) Variations and Its Effect on Glick's Method

As noted previously, the lack of knowledge of the correlation functions
C(X), F(K), and D(K) represents the major limitation in Glick's method.

The effect of these functions on the pressure distribution are quite notice-
able, as may be observed in Figure 5, The IBM programs described in Section IV
have the flexibility of being able to vary C(K). All computations to date have
used the linear correlation functions of equations (6) in the Blasius point to
separation region. It may be found later that expressions other than linear will
result in better comparison with experiment.

In the separation to pressure plateau region, the pressure ratio increases
as C; is increased, as would be expected. A constant value in this region is
only a "first" approximation. As more experimental data becomes available,
functional relations for C, may result in better 'universal" values.

Much remains to be learned about the interplay of the correlation functions
in Glick's method. This knowledge hinges on being able to assemble enough pressure
distribution data, This data should cover broad Mach and Reynolds number ranges
in order to result in "universal' correlations.

V-3, Normal Pressure Gfadient

One of the most important results of the Schubauer Ellipse investigation
wae the discovery of a normal pressure gradient in the separation region. Figure
6 shows a comparison of the wall pressure, measured by 16 static pressure orifices
with the pressure distribution at the outer edge of the boundary layer, calculated
from Bernoulli's equation using the u, velocities taken from Schubauer's velocity-
profiles. The agreement is reasonably good except in the region where flow initially
separates, indicating that a normal pressure gradient is involved in the separation
process.

The significance of the normal pressure gradient becomes obvious when one
considers supersonic laminar flow on a flat plate with an impinging oblique shock
wave., Inviscid theory indicates that a disturbance cannot propagate upstream;
however, if the conditions are right to cause separation, then the separation
will occur upstream of the impinging shock. This upstream separation is of course
due to the propagation of pressure, from behind the shock wave, upstream of the
shock wave through the subsonic boundary layer. Thus a normal pressure gradient
exists at the point of separation and plays a significant part in the separation
process,
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VI. GUIDE LINES FOR FUTURE WORK

Effort thus far has been principally devoted to: 1) surveying the liter-
ature for analytical solutions, 2) programming of Glick's method for IBM solution,
and 3) collecting and correlating experimental separation data. Future work on
this project will be directed towards the problem areas which are described below.

VI-1l. Search for Experimental Pressure Data

The need for more experimental data is the most serious problem currently
faced. Laminar separation data above Mach 3.0 has not been located.

A letter 18 being sent to a number of research facilities which are engaged
in supersonic and hypersonic testing. It is hoped that this will produce data
that will aid this study.

VI-2, Two-Dimensional Analysis

Throughout the course of this work, evidence has been accumulating which
ind{cates that the one-dimensional approach may not be sufficient to explain
the separation phenomenon in either subsonic or supersonic flow. Foremost
among this evidence is the existence of a normal pressure gradient in the region
where the flow separates, Momentum considerations indicate that there must be
a significant normal component of momentum transfer in order to support this
pressure gradient. Figure 7, showing the variation of the entrained mass flux
within the boundary layer on the Schubauer Ellipse, i{s a typical example of the
abrupt variations which the various boundary layer parameters undergo in the
separation region., The difficultles inherent in attempting to explain variations
of this sort in the light of present one-dimensional theory are apparent,

Quite possibly the combination of the variable quartic velocity profiles
of Tani and a two-dimensional analysis could lead to an improved understanding
of the role of the normal pressure gradlent in the separation process, It is
therefore felt that a brief analytical investigation is in order to determine
more fully the advantages and disadvantages of a two-dimensional analysis of
the separating boundary layer. Such an investigation might also provide hints
as to how the validity of the one-dimensional approach might also be checked
experimentally.
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NOMENCLATURE

velocity profile parameter, speed of sound
velocity profile parameter ‘

mixing rate correlation function

aQerage values of C(K)

skin friction correlation funétion

defingd in equation (3)

defined in equation (4)

form factor

Pinkus parameter

arbitrary parametefs in equations (7)
mass flux in the x-direction = If p u dy
ma,

Mach number

pressure

Reynolds number

velocity in x-direction

transformed velocity u

" coordinates along surface

transformed normal coordinate
ratio of specific heats
transformed §

boundary layer thickness

‘displacement thickness

momentum thickness

M - M

e o]
m/ptat
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Subscripts
b

e

Crocco-Lees velocity profile parameter
coefficient of viscosity

density

Blasius flat platé conditions
conditions at y = §
incompressible conditions
conditions at separation

free stream stagnation conditions
at location x

mean value of viscous region

free stream conditions



